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ON RULES BASED ON SAMPLE MEDIANS
FOR SELECTION OF THE LARGEST 1
LOCATION PARAMETER*

Shanti S. Gupta
Purdue University

and

Ashok K. Singh
Purdue University and National Institute of Environmental
Health Sciences, Research Triangle Park, NC

1. Introduction .
Many of the classical statistical procedures which are superior to their |

competitors under the assumed model have one drawback, namely, that their

behavior is seriously affected if a few gross errors are present in the sample.

For example, consider the problem of estimation of the mean 8 of a univariate

normal population. It is well known that the sample mean is uniformly minimum

variance unbiased estimate of 6, but it is not a very good estimate if there are

gross errors in the sample. Hodges and Lehmann (1963) have proposed a class of

estimates for the location parameter based on rank test statistics; the estimates

belonging to this class are approximately normally distributed, provided the sample

size is sufficiently large. Gupta and Huang (1974) have investigated selection

procedures based on one-sample Hodges-Lehmann estimates of location for the

probiem of selecting a subset containing the largest t (1 < t < k) location

parameters from k (k > 2) given populations, assuming the sample size is large.

An important member of the class of Hodges-Lehmann estimates is the sample

median. Apart from having a simple analytic form for its distribution, the

sample median as an estimate of location has some other properties. Intuitively,

a reasonable estimate of location should have a distribution which, in some sense,

*This research was supported by the Office of Naval Research contract N00014-75-C-0455
at Purdue University. Reproduction in whole or in part is permitted for any purpose
of the United States Government.
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is centered on the true location parameter value. It is shown by Hodges and
Lehmann (1963) that the sample median has a distribution which is symmetric about
the true parameter value if the underlying distribution is symmetric, and in case
the underlying distribution is not symmetric, the sample median is a median
unbiased estimate of location, i.e., the median of its distribution coincides
with the true location parameter. In this paper we invescigate a procedure

based on sample medians for selection of the largest location parameter of

k (> 2) populations.

In Section 2.0 some notations used in this paper are introduced. In
Sections 3 and 4 the problem of selecting a subset containing the largest of
k (> 2) location parameters is considered, and a selection rule based on sample
medians is proposed and investigated.

Section 5 consists of investigation of selection rules, which are slight
modifications of the rule proposed in Section 3, for the normal means. In
Section 5.3 the proposed rule based on sample medians is compared to Gupta's
rule based on sample means [see Gupta (1965)], when the normal means are
equally spaced. It appears from the numerical computations that, as expected,
Gupta's rule is superior. In Section 5.5 we define and compute the asymptotic
relative efficiency (ARE) of rules based on sample medians relative to rules
based on sample means. For the normal case the medians procedure is inferior
to the means procedure, the ARE being 2/n. For the contaminated normal population,
however, the medians procedure fares better than it does in the normal case, as
the ARE is found to be an increasing function of the variance of the contaminating
normal popn'ations. In Section 5.6 a test of homogeneity baced on sample medians
is propos " a relation between the test and the selection rule of Section
5.1 is estab .. .ed. Section 5.7 deals with the distribution of a statistics

useful in some selection and ranking problems, and its percentage points are computed.
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As mentioned above, the means procedure is better thzn the medians procedure
if the underlying distributions are normal. This may be Jve to the fact that
the normal density has short tails, and hence the probability of getting extreme
observations is very small. In case the underlying distributions have longer
tails, for example, logistic and double exponential, extreme observations are
more frequent and they have a serious effect on the sample means, but not on
the sample medians. In these situations the medians procedure should perform
better than in the normal case. This heuristic argument is strengthened by
the fact that, for logistic populations, the ARE is n2/]2, and for double
exponential populations, the ARE is 2. This is the subject of Section 6.

2.0 Preliminaries and Notations

Let XpseeuaXom (m > 1) be (2m+1) independent observations from a
population with cumulative distribution function (cdf) F(x,8) and probability
density function (pdf) f(x,0), x,8 € IR, the real line. Then the sample

median X is given by

where X[]] 5,..5_X[2m+]] are the ordered X;.

The pdf of X is

a(x,e) = ‘f"'j; L [F(x,8)T"[1-F(x,8) I™F(x,6) (2.0.1)
m!

and the corresponding cdf is

X
G(x,0) = ¢, [ [F(u,0)1"(1-F(u,0)]"f(u,6)du

f i 7’1 (2.0.2)

= IF(x.e)(m"‘] ,m”‘])
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where Iy(p,q) is the incomplete beta function:
¥: n i
I,(psa) = é WP 1(1-u)% Tdu/B(p,q), 0 <y <1, p,q > 0. (2.0.3)
The following result from Karlin (1968) will be used in later sections:

Lemma 2.0.1: If f(x,8) has monotone likelihood ratio (MLR) in x and &, then
g(x,8) given by (2.0.1) has MLR in x and 6.

Note, the above result is true for the distribution of any order statistic.

3.0 On Procedures Based on Sample Medians for Selection of the Largest Location
Parameter.

Let my,...,m be k independent populations with cdf's F(x-e,).....F(x-ek).
respectively. Let X;;,...,X;, be a sample of size n = 2m1 (m > 1) from T
i=1,...,k. Then the pdf g(x-ei) and the cdf G(x-ei) of the sample median ;i
from =, can be obtained from (2.0.1) and (2.0.2) by substituting f(x.ei) = f(x-ei)
and F(x,ei) = F(x-ei).

For selecting a subset containing the population (k] associated with the
largest location parameter e[k], so that the probability of selecting (k] in the
subset is at least a preassigned constant P* (1/k < P* < 1), we consider the

following procedure:

R: select n; iff X, 3,X[k]-d (3.0.1)

where d > 0 is chosen to satisfy the basic P*-condition.
Let i(i) be the (unknown) sample median which corresponds to the i-th
ordered parameter o] (i =1,...,k). Then

P(CS|R) = P(i(k) > i[”-d)

1)t o k]
I
(m!) !-[le Flutdver, 1-or47)

(m+1,m+1) I0F(u) I01-F(u) 1"
«f(u)du (3.0.2)
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It is clear from the expression (3.0.2) that the infimum of the probability
of a correct selection occurs when all the location pirameters 6; are equal, and

hence the constant d is given by

f-[G(u+d)]k']9(u)du = p* (3.0.3)

3.1 Expected Size of the Selected Subset

The size of the subset selected by the rule R is a random variable which
takes values in the set {1,...,k}. It is desirable that the size of the selected
subset be small, and also the ranks of the selected populations be large, where
the population associated with °[i] is given rank i (i = 1,...,k). The expected
size of the selected subset and expected sum of ranks of selected populations
? have been proposed as criteria of efficiency of selection rules [see for example,
Gupta (1965)].

Let S and Sr be random variables denoting the size of the selected subset

and the sum of ranks of the selected populations, respectively. Then

k
Eg(SIR) = ). Pe(iIR) (3.1.4)

k
and Eg(S,IR) = T 1 P(i[R) (3.1.5)

N - ig

“. where Pe(iIR) is the probability with which the rule R selects the population

associated with e[i], i=1,2,...,k, and is given by

P (’lk) 1""%"'fw j 1 F(u+d+e[1]-e[ ])(m+l,m+l)]

LR IO -F(u) ™ (u)du (3.1.6)
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3.2. Some Properties of the Rule R

(i) Upper bound on Ee(SIR)

We assume that f(x-6) has MLR in x and 8. Then it follows
from Lemma 2.0.1 that g(x-6) has MLR in x and 6. Hence from
Theorem 1 of Gupta (1965), we have

Max E (S[R) = Max Eg(SIR) = kP*
2@ ° 9cey °

where € = {(a]....,ek) €6: 6) =...= 6,}.
(ii) Monotonicity

It is clear from the expression (3.1.6) that the rule R is

strongly monotone [see Santner (1975)], i.e.

+ in e[i] if remaining component,
(11R) of ¢ are kept fixed
P.(i|R) is
g + in e[j]. J#i  if remaining component,
of 6 are kept fixed

The following two properties of R are immediate consequences of strong

monotonicity:
(a) R is monotone: Pe(1|R) > Pe(j|R), 1<j<ick
(b) R is unbiased: Pe(kIR) > Pe(‘i|R), Te1 <k

(iii) Minimaxity with Respect to the Expected Subset Size Among Rules
Based on Medians

A selection rule R* is said to be minimax with respect to S if

sup Ee(SIR*) = inf sup Ee(SIR')
e - R" ¢ =




b

where the infimum is taken over all selection rules R' which satisfy the

P*-condition.
The pdf g(x,8) is clearly of location type and it has MLR in x and 6. It

follows from Theorem 1.4.2 of Berger (1977) that the selection rule R is minimax

with respect to S among all rules based on sample medians.

4.0 Selection of a Subset Containing all Location Parameter Populations Better J
Than a Control

Suppose we have k+1 independent populations ToaTyseeeaTy with densities
f(x,eo), f(x,e]),...,f(x.ek). respectively. The population " is a standard
or control population. The population LF is said to be better than the control
population L) if 85 > ;. We are interested in the subset of populations which
are better than control. Gupta and Sobel (1958) have considered the above problem
for several distributions and have investigated rules based on sufficient statistics

which select a subset such that all populations better than the control are

included in the subset with probability at least P*, where P* (0 < P* < 1) is
a preassigned constant. We will consider the case of location parameter populations,
when f(x,ei) = f(x-ei), i=0,1,...,k, and investigate a rule based on sample
medians. The parameter 8y may or may not be known. We corsider these two cases
separately:
(a) 8o known:

Here we are given sample medians ii of n = 2m+1 independent observations from

5 (i =1,2,...,k). Consider the rule Ra defined as follows:

Ry: Select ny iff X, > o5-a (4.0.1)

where a is the smallest value satisfying the P*-condition.
Let k] denote the number of populations that are better than (as good as)

the control, and k2 denote the number of populations for which Oi < 90. Then




ky + k, = k. Also let primes (') refer to the ky populations better than

control. Then we have

P(CSIR,) = 1;: P(X} > 65-a)
K
= igl []'IF(eo-a-ei)(”"'m*‘)]‘
Clearly
inf P(CS|R,) = [I]-F(_a)(m+l,m+l)]k] (4.0.2)

In case k] is not known, a lower bound for P(CSIRa) can be obtained by
substituting k] = k is (4.2), and thus a conservative value of the constant

a = a(P*,m,k) can be obtained from the following equation:
h 1/k
1)) (M) = (P¥) (4.0.3)

Expected Size of the Selected Subset.

The size of the subset selected by the rule Ra is a random variable
which takes values in the set {0,1,...,k}. Letting S denote the size of a
subset selected by a selection rule, the expected value of S can be looked

upon as a measure of the performance of the rule [see Gupta (1965)]. Now

k
L

E(S|R.)
& iinl

P{ni is selected}

Ko
121 P{X; > 8,-a}

k
- iZ]U]_F(eo_a_ei)(mn,m+1)] (4.0.4)
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Let 1] < °[2) £ +-2 k] be the ordered parameters and let p[i](Ra)
be the probability that the rule Ra selects the population associated with
e[i], = ileaesks Then

k
E(S|Ra) - 1£] pti](Ra) (4.0.5)

4.1. Probability that the Selected Subset Contains Only the Populations Better
Than the Control.

Assume that k] of the given k populations have parameter 6+6 and the
remaining populations have parameter 6, where 6,5 and e, are such that
0+6 > 85 > 6. In this situation it is meaningful to ask for the probability
that the rule select, exactly k] populations [cf. Gupta (1965)]. We will
consider the special case k] = 1. Letting p](Ra) denote the probability of

selecting exactly one population, we have

k
p](Ra) iZl P(Mi > 8-, Mj <0p-a, j# i, =1,....k)

[1 = T (o -g-5-a) M1 [lg( g.g) (™1 m1) 7%

#O0 = Tpp o)™ 1m D] Upgp /g q)(m1.m Il o o) (w1 1) 162

(4.1.1)

In this case, the value of a is to be obtained from the equation
I]-F(-a)(m] ,ﬂH’]) = P* (4-]-2)

(b) % Unknown:

In this case (2m+1) independent observations are taken from - Let io be

the median of the sample from 1g- We consider the following selection rule:
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Rb: select P iff xi Xo -b (4.1.3)

where the constant b is chosen to satisfy the basic P*-condition.

We have, as in Case (a),

P(CSIR,) ""ll%'!,[inx{] Ir(u+eo_ei_b)(m+1,m+l)}[F(u)]m[]-F(u)]f(u)du

1-—-115 J 01T o) (w4141 TP () I01-F0) TP () (4.1.4)

The constant b = b(k,m,P*) is obtained by equating the right hand side of
(4.9) to P*.

The expected subset size for the rule Rb is obtaired as in Case (a).

Remarks :
(i) It can be seen from expression for P(select ei) for rules Ra and Ry that,

in either case

P(select ei) > P(select ej) if 8y > ej.

(ii) If 0; »« for all i = 1,...,k, and 8y is finite, then E(S) - k in each
case.
In the following sections we will consider several specific densities
of location type and investigate, in some detail, rules based on sample medians
for selection problems connected with them. As pointed out earlier, the
behavior of the proposed selection rule seems to depend on the type of tails
of the underlying distributions. It is known [see, for example, Hajek (1969)]
that among normal, logistic and double exponential distributions, the normal
distribution has the shortest or the thinnest tails, and then come logistic
and double exponential distributions, in that order. Subset selection procedures

based on sample medians for double exponential populations have been investigated




L
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by Gupta and Leong (1976). McDonald (1977) has investigated a medians procedure
for logistic populations. We will be mainly concerned with normal and double

exponential populations, but we will include some results for the logistic

distribution.

5.0 Normal Populations

Gupta (1956, 1965) has considered the problem of selecting a subset
containing the largest of several normal means, and has invastigated rules
based on sufficient statistics, namely the sample means, assuming a common
known variance. It is well known that the sample mean is a uniformly minimum
variance unbiased estimate of the normal mean, and therefore it should provide
a better selection rule than the rule of Section 3. In the next section we

study the normal case in order to get an idea of how far off the medians

procedure is from the means procedure.

5.1. Normal Populations with Common Known Variance: A Procedure Based on
Sample Medians for Selecting a Subset Containing the Largest Normal Mean.

Let LORRRRFLI be k(> 2) independent normal populations with means Byseeesfy
and a common known variance 02. Let ii be the median of n = 2m+1 (m > 1)
observations from n, (i = 1,...,k). The pdf g(x,ei) and the cdf G(x.ei) are
obtained from (2.0.1) and (2.0.2) by the substitution f(x,ei) = ¢(x-ei) and
F(x,ei) = ¢(x-ei) where ¢(-) and ¢(-) denote the pdf and cdf, respectively, of
a standard normal distribution.

For the problem of selecting a subset containing the population associated

with the largest mean e[k], consider the following procedure

Ry Select my iff X, > i[k] - dyo (5.1.1)
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where d, (> 0), the smallest constant to satisfy the basic P*-condition, is

given by the following equation:

fm+]%! f¢[lo(u+d1)(m+l,m+l)]k']om(u)[l—o(u)]mo(U)du - pe (5.1.2)

m!)% -=

5.2. Some Properties of the Rule R].

The expressions for Ee(slkl)' the expected subset size, and Ea(SrIR]). the
expected sum of ranks, in ;sing the rule R, can be obtained from (3.1.4), (3.1.5)
and (3.1.6) by substituting F(u) = ¢(u) and f(u) = ¢(u). Since the normal density
has the MLR property, the rule R] has all the properties mentioned in Section

3.2 for the general rule R.

5.3. Comparison between R] and Gupta's Selection Procedure Based on Sample Means
when the Normal Means are Equally Spaced.

Let TyseeesTy be k independent nommal populations with means 6, 6+ é0,...,

2

8 + (k-1)6c and a common known variance o, where 6 > 0 is a known constant.

Let X, (3 =1,...,n) be a sample of size n = 2m+1 (m > 1) from m Y & ssask)s

J
and let X,, Xi be the median and the sample mean of the observations from ..
For the problem of selecting a subset containing the largest normal mean,

namely, 6 + (k-1)8o, Gupta (1965) has proposed the following rule

2 do
R : Select n, iff X, > X - (5.3.1)

where the constant d satisfying the P*-condition is given by

[ oKV (urd)o(u)du = P* (5.3.2)

It should be observed that, unlike d], the constant d does not depend on n.

We will compare the rule R, defined by (5.1.1) and (5.1.3) to Gupta's rule Rg.
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Let P(i,k,P*,5,n|R) denote the probability with which a rule R selects
the population associated with the i-th largest mean (i = 1,...,k). Then

from Gupta (1965) we have

P(i,k,P*,G,n]Rg) = P(i,k,P*,G/ﬁ|Rg)

- k
[ [0 o(utd-(j-1)s/n)Jo(u)du. (5.3.3)
- j=

Jti

Also, for the rule R], we have

P(i,k,P*,8,n|R;) = L%m?}%i £ MGl kP8, (W) (1-0(0) Ms(u)du (5.3.4)
m) o -»
where

H(u|i,k,P*,6,n) = jE] LI¢(u+d]-(j-i)6)(m+]’m+])]
Ifi

Next, let ¥(k,P*,s,n|R) and w](k,P*,s,nIR) denote the expected sum of
ranks and expected average rank of the populations in the selected subset,
respectively. Then

v(k,P*,6,n|R) = _EliP(i,k,P*,G,nIR)=kw1(k,P*,6,n|R). (5.3.5)

i=

Tables of P(i,k,P*,é/ﬁ]Rg), ¥y and the expected proportion of the populations
retained in the subset (= E(Sle)/k) are available in Gupta (1965). We have
computed the values of these functions for R] for k = 2(1)5,n = 3,5, 6 = 0.5(0.5)5.0
and P* = .90, .95. The numerical integration was performed on a CDC 6500 using
Gauss-Hermite quadrature based on twenty nodes. These tables are given at the
end of this section. For example, for P* = .90, k =5, n= 3, 6 = 1.5//3 the
rule R_ based on sample means selects the second best and third best populations

g
with probabilities .781 and .357, respectively. The corresponding probabilities
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for the rule R] are .822 and .467, in that order. The probability of a correct
selection (selecting the best) has to be greater than .90 for both the rules

and is actually equal to .998 for the rule Rg and .997 for the rule R]. The
expected average rank of the selected subset and the expected proportion of the
populations selected in the subset for the rule Rg are 1.86 and .441, respectively.

The corresponding values for the rule Ry are 1.995 and .489. :

b It appears from these tables that the rule Rg based on sample means is !

superior to the rule R] based on sample medians, and also, as expected, the

performance of Rg relative to R] improves as sample size is increased.

Remarks:

(1) For fixed P* and k

P(1.k,P*,8.0 R) ¢ L oo
P(kok,P*,5,n[R;) 4

(2) For fixed P*, i, 5 and n

P(i,k,P*,s, nIR]) v+ink, 1 <1<k

(3) For fixed k, P* and (i-j)s

Tim y(k,P*,6,n) = k

N>

(ii) It follows from (5.3.4) and (5.3.5) that

k -]
(R) ¥(k,P*,5,n|Ry) > ‘M%-'- I 1 H(u[1,k,P*,6,n)e"(u)[1-0(u) "¢ (u)du E

(m!)% 1=l -
where the function H is as defined in (5.3.4).

) v(k,praonlry) > EEEHEEL 11y gy (et men) I D1-000 Pou) g
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5.4. A Selection Rule Based on Medians from Large Samples

Let f(x) be the pdf of a continuous random variable X and let e be its
unique median. Then the distribution of i, the sample median based on n = 2m+]
(m > 1) independent observations on X, is known to be asymptotically
N(e,[4(f(e))2(2m+1)]']) provided certain regularity conditions on f(x) are met
[see Cramér (1946)]. This result will be used to investigate procedures based
on medians from large samples.

Using the ﬁotations of Section 2.0, we see that, for large samples from
normal population N(ei,oz) B e ii is approximately distributed as
N(ei,n02/2(2m&])). For the problem of selecting a subset containing the largest

mean e[k], we proposed the following rule:

= & dzo/;r- (5 4 ])
R,: Select . iff X; > X - 4.
where the constant d2 > 0 is given by
[ ¢ (urdy)o(u)du = P, (5.4.2)

Tables of values of d, satisfying (5.4.2) are available in Bechhofer (1954)
for k = 1(1)10 and in Gupta (1963) for k = 1(1)51 [see Table 1 of Gupta which
gives values of dZ//f for n = k-1 = 1(1)50].

The expression for P(i,k,P*,s,n|R2), the probability of selecting the

population associated with e[i] for the rule R2, is

P(1,k,P*,6,n[Ry) = [ hluli,k.P*,6.n)¢(u)du (5.4.3)

where

ulikaPsn) = 1 o(urdprlop o op 471,/ 25g ) (5.4.4)
i

b3
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5.5 Asymptotic Relative Efficiency (ARE) of the Rule R, Relative to Gupta's Rule

In this section we compute the ARE of the rule R2 with respect to Gupta's
rule in the following two cases: (i) independent normal populations and (i)

independent contaminated normal population. We consider the two cases separately.

(i) Independent Normal Populations

Let TyseeesT be k independent normal populations with means Byse09Bps

respectively, and a common known variance 02. Assume that 8, (i =1,...,k) are

in the following slippage configuration:
o +oaifi-= io; A > 0 unknown
8 ifit¢ io

The index i (1 < ip < k) is not known. The population m; s the best
0
population.

Our interest is in the relative performance of the following two selection

procedures:
(R » dzo/;
R : Select n, iff R, > R 1 - 92 . |
g 1 (I [k] v’fT

The constants d and d2 satisfying the basic P*-condition are both given !

by (5.4.2) and hence we have

d2 =d (5.5.1)

Let S* be the number of non-best populations in the selected subset.
Then small values of S* are desirable and therefore, consistent with the
basic P*-condition, we would 1ike to keep the expected value of S* as small

as possible.
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It is intuitively clear that the performance of any reasonable selection
rule should improve as the sample size is increased. For a given € (0 < €< 1),

let NR.(E) be the number of observations needed so that
E(S*|R') = € (5.5.2)
We will use the following definition of ARE [see Barlow and Gupta (1969)]:

Definition 5.5.1: The ARE of the rule R2 relative to the rule Rg is defined

as
Ng (©)
ARE (R,, R;6) = 1im __HT—T .
2 &0 NR2 .
Now using the definitions of NR (€) and NR(G), it can be shown that
2
[ Lo(u-a/2N, (&) 7m+d)-o(u-aNg T€)+d)16* 2 (urd)o(u)du = 0 (5.5.5)
-0 2 g
Using the fact that ¢ is strictly increasing,it can be seen from (5.5.5)
that
2 Np (€)
= Ng(©)
and hence
ARE(R,,R) = 1 ——(TNR(E) 2 . .64
,R) = 1im = == ,64.
. &0 NR2 St

(ii) Independent Contaminated Normal Populations

Suppose that in the course of sampling from population =, (i = 1,...,k)

something happens to the system and gives rise to sone wild observations.

Assume that the pdf of m, can be written as
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f(x,ﬁi) = o f](x,ei) + (]-u)fz(x,ﬁi). 0<ac<l (5.5.6)

This means that the experimenter is sampling from a population with
pdf f](x,ei) 100a% of the time, and from fz(x,ei) 100(1-a)% of the time.
The presence of observations from fz(x,oi) is termed as contamination.

For our discussion we will assume that

_ 1 )(-6,l
fI(X-Gi) o gq’(' o )
1 =Yk
1Y
fo(x-8;) = — ¢ )
i T e

where b is a positive constant. We will also assume that the means 0,
are in the same slippage configuration as in Case (i).

Now, it is known [see, for example, Rohatgi (1976)] that ii and Xi both

are asymptotically normal, each with mean 0, and variances 62 and 62, respectively,
where

<2 ncz 1

G = I :;YE (5.5.7)

ot
/b
-2 02
= “n [u + (]-tx)b] (558)

For the problem of selecting a subset containing the best population,

consider the following two rules:

R;: select 5 iff X; Z-X[k] - d%o

R;: select n, iff X, > X[k] - d* o.

It is easily seen that the constants dE > 0 and d* > 0 both satisfy

the equation (5.4.2) and hence d} = d* = d, say. Then as in (1) above, we have
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“02 ] ()2
ZNR*(éy [ot 1-uj? 3 N;:(ET [a + (1-a)b].
2 o ;%7

Hence NR*(&)

]elg NRE( €

"

ARE(R%,R*)

1-a42
[a + (1-a)b]la + —
/b

2N

+w as b » =,

The above result shows that for « < 1 and large values of b the rule

RE based on sample medians is much better than the rule Ra based on sample
means. In fact, it can be seen from a result in Rohatgi (1976) that the
ARE(Rg,Ra) is close to 1 when b = 9 and « = .915, and as the differences

b-9 > 0 and/or .915-a > 0 increase the rule R5 shows a ~zonsiderable improvement

! over Ra in terms of the ARE.

- 5.6 A i
| 6 Test of Homogeneity Based on X[k] X(]J

Let TyseeesTy be k independent normal populations with means S ERRRRLI

respectively, and a common known variance 02. As before, let ii be the sample

median of n = 2m+1 (m > 1) independent observations from m (i =1,...,k), and

x[l]""’i[k] be their ordered values. For the hypothesis of homogeneity

we propose the following test procedure:

where the constant y is obtained from the size-condition:

P (R > 'y) < e
H0 -
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Here « is the size of the test.

The following theorem gives the constant y, and also establishes
a relationship between the test given by (5.6.1) and the selection procedure

R] of Section (5.1).

Theorem 5.6.1

For 0 < a < 1, let y satisfy
i g 01
fpetle > Il 21 o
Then
#, (R > y) < a.
Ho
Proof: The proof is similar to that of Theorem 6.1 of Gupta and Leong

(1977), and hence omitted.

5.7 On the Distribution of the Statistics Associated with R] when the

Underlying Distributions are Normal

Let ii (i = 0,1,...,k) be sample medians of (k+i) sets of n = 2m+]
(m - 1) independent observations from a standard normal distribution.

Define

The random variables Zi are correlated and the distribution of
Z = max Zi is needed in some ranking and selection problems. For
1<i<k
standard double exponential populations the distribution of Z has been
computed by Gupta and Leong (1977) for selected values of k, n and a.

In this section we give an expression for the distribution function of Z
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and also provide a short table for its upper percentage points for P* = ,= .75,
.85, .90, .95, .99; k = 2(1)5, n = 3(2)11.

Let F(-) be the cdf of Z. Then

F(z) = P(Z < 2) = P(X, < Xg + 2, 1 = 1,...,k)
i Ef}r:z;%_)' f “Mm)(mq,mn)]" $™(x) [1-9(x) ™ (x)dx. (5.7.1)

Computations for upper percentage points of F we-e done on a CDC 6500
using Gauss-Hermite quadrature based on 20 nodes to perform the required

numerical integration.

6.0 Logistic and Double Exponential Distributions

The Tlogistic distribution is used frequently as a model in economic
demographic problems, and also as a growth curve. The logistic curve
although very similar in shape to the normal curve, is different in many
ways. It has a heavier tail than the normal, and it does not belong to the
Pearsonian or Exponential families of distributions [see Patel, Kapadia
and Owen (1976)].

The problem of selection of a subset containing the largest location
parameter of several logistic populations has been investigated in detail
by McDonald (1977). For selected values of k, n and P*, values of the
constant d required for the rule R have been computed. McDonald has also
compared the medians procedure to the means procedure and has found the
ARE in the Tlogistic case to be n2/12. In this sense the rule based on
sample medians fares a little better in the logistic case, than it does

in the normal means problem.

I ——




s 4

22
TABLE T
Upper 100(1-P*) percentage points of Z = max (X:-XO) where
l<i<k 3
XO’XI""’Xk are iid sample median random variables i~ samples
of size n = 2m+1 (m > 1) from the standard normal distribution.
— :
k 3 5 7 9 N ) o
.638 511 .445 .409 .393
.980 .784 .676 .614 .582
1 1.213 .969 .832 .751 .710
1.558 1.245 1.065 .956 .900
2.208 1.766 1.522 1.398 1.491
.959 .768 .667 .610 .579
1.276 1.019 .876 .792 .744
2 1.493 1.192 1.019 .915 .855
1.816 1.452 1.239 1.105 1.030
2.429 1.943 1.676 1.533 1.606
1.125 .901 .783 .715 .675
1.432 1.142 .980 .884 .828
3 1.642 1.310 1.117 1.000 .931
1.854 1.563 1.333 1.184 1.099 1
2.551 2.040 1.761 1.609 1.671
1.235 .989 .859 .784 .738
1.536 1.223 1.048 .945 .883
4 1.742 1.389 1.182 1.057 .982
2.049 1.639 1.396 1.238 1.145
2.634 2.106 1.819 1.661 1.715

SRR PN

For given k,n and P* = .75 (top), .85 (second), .9C (third),
.95 (fourth), .99 (bottom), the entries in this table are the
values of d which satisfy |

jm Gk(x+d) g(x) dx = pP*

where G(-) is the cdf and g(-) the pdf of the median of a sample
of size n from a standard normal population; n > 3 is an odd integer.
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TABLE 1IA

For the rule R] and the configuration (6, o + 60,...,6 + (k=1)4c) this

table gives the probability of selecting the normal population with rank
i when the population with mean ¢ + (i-1)4c has rank i, i = 1,2,...,k; the

’ 26
common variance ¢ is assumed to be known.

P* = 90, n = 3

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

5 /—ﬁ 5

ki s P e X PR YR )

21 .836 .749 .643 .524 .404 .291 .196 123 072 .039
2 .944 971 .986 .994 .997 .999 1.000 1.000 1.000 1.000

g .778 .585 .359 7 .061 .016 .003 .000 .000 .000
2 .882 .828 .745 .640 A .400 .288 194 121 .070
3 959 .983 .993 .997 .999 1.000 1.000 1.000 1.000 1.000

41 .704 .381 <18 .019 .001 .000 .000 .000 .000 .000
2 .818 .648 .423 217 .084 .024 .005 .001 .000 .000
3 .907 .865 .793 .697 .583 .462 . 344 .240 .15  .094
4  .969 .989 .996 .998 .999 1.000 1.000 1.000 1.000 1.000

51 .612 .193 .019 .001 .000 .000 .000 .000 .000 .000
2  .740 .425 .142 .024 .002 .000 .000 .000 .000 .000
3 .845 .688 .467 .251 .102 .03 .007 .001 .000 .000
4 .923 .887 .822 SRS .624 .504 .384 2 i8s (113
e 97, .992 .997 .999 1.000 1.000 1.000 1.000 1.000 1.000

TABLE T11A

For the rule R] and the configuration (o9, 6 + &o0,...,0 +(k-1)60) this table

gives the expected average rank of the selected subset (top) and the expected
proportion of the populations selected in the subset (bottom) when the normal
population with mean 6+(i-1)ss has rank i, i = 1,2,...,k; the common variance o
is assumed to be known.

P = .90, n=3

5 1.0 $es 2.0 9 3.0 3.5 4.0 4.5 5.0

k
2 1.361  1.345 1.307 1.256 1.199 1.145 1.098 1.061 1.036 1.019
.890 .860 .814 «199 .701 .645 .598 062 536 .519

3 1.806°  1.730 ' 1.610 1.481 ' 1.367 1,272  1.193 1,189 1,081 1.08F
.873 .799 .699 .603 . 927 .472 .430 398 ' .3714 3%

4 2.238 2.057 1.831 1.63¢ 1.479 1.358 1.261 1.180 1.117 1.07M
.849 721 .582 .483 .417 .372 .337 310 .289 .274

5 2.639 2.323 1.995 1.745
.819 .637 .489 .401
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TABLE 11B

For the rule R1 and the configuration (6, 6 + 60,...,8 + (k=1)&0) this table

gives the probability of selecting the normal population with rank i when the
population with mean ¢ + (i-1)é0 has rank i, i = 1,2,...,k; the common variance

is assumed to be known.

P* = 95, n =3

]
l

svn 5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

kK1 TR

2 ki 200 .850 .768 .665 .548 .427 312 Ard .136 .080
2 .974 .988 .995 .998 .999 1.000 1.000 1.000 1.000 1.000

3 1 L8 .718 .500 277 118 .037 .009 .001 .000 .000
2 - .938 .902 .842 .758 .653 «D 33 .414 .301 .204 .129
3 | 982 .993 .998 .999 1.000 1.000 1.000 1.000 1.000 1.000

41 .784 .477 «173 .033 .003 .000 .000 .000 .000 .000
2 | .85 «132 .517 .292 .126 .041 .010 .002 .000 .000
3 .940 .909 .851 .770 .668 551 430 «315 .216 .138
4 .982 .994 .998 .999 1.000 1.000 '.000 1.000 1.000 1.000

§ b 182 . 306 .043 .002 .000 .000 .000 .000 .000 .000
2 .842 .565 -235 .052 .006 .000 .000 .000 .000 .000
2R | | .798 .602 .369 .176 .063 .016 .003 .000 .000
S, .938 .894 .828 .739 .631 .512 . 391 .281 .188
e ==2990 .997 .999 1.000 1.000 1.000 1.000 1.000 1.000 1.000

TABLE IIIB

For the rule R] and the configuration (¢, ¢ + 80,...,0 + (k-1)40) this table gives

the expected average rank of the selected subset (top) and the expected proportion
of the populations selected in the subset (bottom) when the normal population with
mean & + (i-1)80 has rank i, i = 1,2,...,k; the common variance +2 s assumed to
be known.

px = .95, n =3

5vn 0 1.0 1.5 2.0 29 3.0 39 4.0 4.5 5.0

429 . 1.413 .39 000,330 213 4.213 1.156 “1.107 1.068 1.080
.942 .919 .881 .831 .774 13 .656 .607 .568 .540

3 1.898  ).838 1.725 "1.59F “1.474 '1.369° 1.279 1.201 1.136  1.080
.930 .871 .780 .678 .590 .524 474 .434 .401 .376

4 2,321 2,961 - ).938 1.230 1.568 - 1.43% T f.320  1.237  l.16e  L.03
.895 .778 .635 «923 .449 .398 .360 329 .304 .284

N X
-

5 2.792 ~ 2.514 " 2.178 "1.908 1.699 1.543 v.419 1.315 1.228% 1.150
.890 +12) .555 .450 .384 +999 . 306 219 .256 .238
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For the rule R, and the configuration (6, 6 + §0,....6 + (k-1)é0) this table

TABLE TIC
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gives the probability of selecting the normal population with rank i when the
population with mean 6 + (i-1)so has rank i, i = 1,2,...,k; the common variance

2
is assumed to be known.

Pos 90,0 =
svn oL 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
R AR B R0 =
21 .838 " .754 .653 .539 .422 -312 .216 139  .084 .047
2 943 .969 .985 =493 997 .999 .000 .000 1.000 1.000
3 A 70E -596 .379 191 .073 .021 .005 .001  .000 .000
2 .882 .832 .753 .652 .538 .422 .311 215 .139 .084
30 2050 .982 .993 .997 .999  1.000 .000 .000 1.000 1.000
41 .10 -400 .134 .024 .002 .000 .000 .000  .000 .000
2y .8de .657 .442 -239 .098 .031 .007 .001  .000 .000
3 - 907 .868 <799 .708 <599 .483 .368 264 .177 .110
4 .967 988 - .995 .998 999 1.000 .000 .000 1.000 1.000
51  .620 .214 .025 .001 .000 .000 .000 .000  .000 .000
2 .746 .444 161 .031 .003 .0a0 .000 .000  .000 .000
3 .848 .698 .486 el 119 .039 .010 .002  .000 .000
4922 .890 .828  .743 .639 .525 408 299 205 -131
9! .94 .991 .996 .999 .999  1.000 .000 .000 1.000 1.000
TABLE I1IC

For the rule R, and the configuration (6,9 + éo,...

,6 + (k=-1)s0) this table gives

the expected average rank of the selected subset (top) and the expected proportion
of the populations selected in the subset (bottom) when the norma%

population with

mean 5 + (i-1)5¢ has rank i, i = 1,2,...,k; the common variance =< is assumed
to be known.
pe = 90, 0=
svn 25 1.0 55 2.0 CAAS) 3.0 Oy 4.0 4.5 5.0
e B
2 1.361 .346 w3l caoz 2 UG 5 Y .107 .069 1.042 1.023
.890 .862 .819 .766 .710 .655 .608 .569  .542 023
3 1.807 135 .621 495 1.382 1.288 .209 144 1,093 1.056
.874 .803 .708 .613 .537 .481 .439 .405  .380 .361
4 2.236 .068 . 850 .654 1.499 1.378 .280 <98 1132 F 083
.851 .128 .593 .492 425 .378 .344 316 .294 278
5, 2.643 .342 .019 0700 1583 1,443 LS9e 2400 1,164 1.108
.822 .647 .499 .409 < 3be s e .284 .260  .241 226




TABLE IID

26

For the rule Ry and the configuration (6,6 + 8045..,6 + (k=1)é0) this table

gives the probability of selecting the normal population with rank i when
the population with mean ¢ + (i-1)sc has rank i, i = 1,2,...,k; the common

: 2
variance g

is assumed to be known.

P* = 95, n =5

o o

vn e 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

ki o

21 4912 .854 176 .678 .566 .449 .337 236 .155 .095
2 .94 .987 .994 .998 999 .000 .000 1.000 1.000 .000

31 .878 .729 .521 .304 w137 .047 .012 .002  .000 .000
21 .939 2905 .848 .769 .670 857 441 L3281 230 .150
3 - .98l 2993 -997 .999 1.000 .000 '.000 1.000 1.000 .000

41 .824 .543 .230 .053 .006 .000 .000 .000 .000 .000
2 901 .778 .582 ~309 174 .064 .018 .004 .001 .000
3 .953 .928 .881 .811 del .615 .499 383 = .27 . 187
4 .986 <995 .998 .999 1.000 .000 .000 1.000 1.000 .000

§5 1 .753 <333 .054 .003 .000 .000 .000 .000 .000 .000
2 .849 .585 .264 .065 .009 .001 .000 .000 .000 .000
. | 7, .809 .622 .399 .202 .078 .023 .005 .001 .000
4 .962 .94 .899 .837 .754 .652 539 22 .31 .215
b L9689 <997 .999 1.000 1.000 .000 .000 1.000 1.000 .000

TABLE IIID

For the rule R, and the configuration (6, 8 * Soy..

.,6 + (k-1)s0) this table

gives the expected average rank of the selected subset (top) and the expected
proportion of the populations selected in the subset (bottom) when the normal

population with mean 6 + (i-1)8c has rank i, i = 1,2,...,k; the common variance
is assumed to be known.

%

P* = .95, n =5

D 1.0 2.0 G 3.0

e e i RS
2 1.429 1% 1.382 - 1.336 1.282 .224
.943 .921 .885 .838 .783 .724
3 1.899 839 . 1.736 . 1.613 - 1.492 .387
932 .876 .789 .690 .602 935
4 L0907, . Zvell.. ENH - P800 ) .629 .493
.916 811 .673 .556 475 .420
9 2,799 2,536 2.208 ° 1.935 & 1.748 .569
.894 « 133 .568 .461 393 . 346

3.5 4.0
1.168  1.118 1
668 . - B1B
1.298  1.220 1.
484 .444
1.383  1.289 1
379 347
1.485  1.340 1
312 .285

4.5 5.0
.078  1.047
.578 .547

153  1.100
.410 .382
.208 1.140
.319 .297
290 1.1
.262 .243
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The problem of selection of a subset containing the largest location
parameter of several double exponential populatiors has been considered by
Gupta and Leong (1976), and the selection rule proposed in Section 3.0 has
been investigated using both exact and large sample distributions of the sample
median. We include some of the results of Gupta and Leong (1976) for the sake
of completeness, and investigate the problem a little further by numerically
computing the values of the functions P(i,k,P*,d,an]) and v(k,P*,d,an])
defined in Section 5.3 when the location parameters of the double exponential
populations are equally spaced. We also compute the ARE of the rule R] relative
to a rule based on sample means. It is seen in this case that the rule R]
based on sample medians in superior to the rule based on sample means in terms
of the ARE.

6.1 Selection of the Largest of Location Parameters of Several Double
Exponential PopuTations.

Let TyoeesTy be k independent double exponential populations with lTocation
parameters 0],...,6k respectively. For the problem of selecting a subset
containing Q[k], the largest location parameter, the equation for the constant
d of the rule R 1is given in Gupta and Leong (1976), and can also be obtained

by substituting

f(u) = L8 e-|u|/2, - @<y <w

7
{%eu'fé s U<0
F(u)= .
]_1e-u/2,u;0

in the equation (3.0.3).
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Since the double exponential distribution has the MLR property, it
:

follows from Section 3.2 that the rule R] has the properties mentioned
in that section. This has also been observed by Gupta and Leong (1976).
6.2. On the Performance of the Rule R when the Location Parameters are

EqualTy Spaced.

i Suppose the location parameters 01""’0k of the k given double exponential

populations are equally spaced, i.e., 6, =8 + (i-1)8, i = 1,...,k, where § > 0
is a known constant. Then P(i,k,P*,5,n|R), the probability with which the rule

R] selects the population associated with O[i]’ is given by

P(i,k,P*,G,n]R) = (_2"_]‘"_]%L}) Lh](Uli,k,P*,6,ﬂ) + hz(uli,k,P*,é,n)]g(u)du (6.2.])

2(m!)= 0
L where
: k
AR s
hy(uli,k,P*,8,n) = 32] Il (-ut(d-(3-1)8)/2 (m+1,m+1)
J#
: k
ho(uli,k,P*,5,n) = j!] I] L1 gmu-(d-(3-1)6)/2 (m+1,m+1)
e
and g(u) = [(1 - 3 ™)z eI,

Expressions for the expected sum of ranks
and the expected average rank of the populations retained in the subset can
be obtained from (5.3.5) and (6.2.1).

For selected values of k, n and P*, tables of the constant d for double
exponential populations are given in wupta and Leong (1976). Using these tables,
we have computed the values of the function P(i,k,P*,5,n|R), the expected
average rank and the expected proportion of populations in the selected subset

for n = 3, 5, P* = 75, .90, .95, .99 k = 2(1)5 and & = 0.5(0.5)5.0. Computations
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were made on a CDC 6500 using Gauss Laguerre quadrature based on fifteen nodes
for the numerical integration. Tables are given at the end of this section. 1
For example if n = 3, P* = .75, k = 5 and 6 = 1.5, the probability of selecting
the third best, the second best, and the best populations are .108, .794 and 1.000,
in that order. The expected average rank in this case is 1.701 and the expected

i | _ proportion of the selected populations is .381.

6.3 A comparison of rules based on medians and means of large samples

Let « ST be k independent double exponential populations with means

|

Brseesfps respectively and common variance unity. Assume that for some

(unknown) index iO (1 5_10 <k), 6, -2=098

bo s il S SRR S I igs where
A > 0 is an unknown constant. Let ii and xi denote the sample mean and sample

median of an independent sample of size n = 2m+1 (m > 1) from ni(i =l s k)

For the problem of selecting a subset containing the largest mean 05 » the

0
following two rules can be used:
R: Select s iff Xi > x[k] - d4//2m¥1 (6.3.1)
R: Select n. iff X, > i[k] - d/V2(2mT) (6.3.2)

where the constant, d > 0 and d » 0 are determined by the basic probability
b requirement. If sample size n is sufficiently large, Xi and Xi are both
normally distributed with mean 6, and variances 1/(2m+1) and 1/2(2m+1), respectively.

It is easy to see, as in Section 5.5, that

d-4d=d, say. (6.3.3)

In the notation of Section 5.5 , let S* be the number of non-best populations

in the selected subset, and let NR.(e) be the number of observations needed so that

E(S*|R') = ¢
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Following the method of Section 5.5 we can see that
- = < 4
NR( €) 2NR(€) |
and hence we have

Nz(€)

ARE(R,R) = Tim Rl
€0 NR €
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TABLE IV A

3]

For the rule R and the configuration (6,6 + 6,...,6 + (k-1)8) this table
gives the probability of selecting the double exponential population with

rank i when the population with mean 6 + (i-1)8 has rank i (i = 1,...,k).
P* = .90, n =
S .5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
k 1
21 .879 .705 .429 .195 .073 .025 .008 .002 .001 .000
2 .986 .996 .999 1.000 1.000 .000 .000 .000 1.000 1.000
3 .814 .335 .050 .005 .000 .000 .000 .000 .000 .000
2 .939 .840 .634 .354 .152 .055 .018 .006 .002 .000
3 .993 .998 .999 1.000 1.000 .000 .000 .000 1.000 1.000
4 1 .687 .067 .002 .000 .000 .000 .000 .000 .000 .000
2 .874 .450 .079 .008 .001 .000 .000 .000 .000 .000
3 .960 .894 737 .468 .219 .084 .030 .009 .003 .001
4 .995 .999 1.000 1.000 1.000 .000 .000 .000 1.000 1.000
5.1 .483 .007 .000 .000 .000 .000 .000 .000 .000 .000
2 .753 .095 .003 .000 .000 .000 .000 .000 .000 .000
3 .906 .538 .108 .012 .001 .000 .000 .000 .000 .000
4 .971 .922 .794 .553 .280 .114 .041 .013 .004 .001
5 .997 .999 1.000 1.000 1.000 .000 .000 .000 1.000 1.000
TABLE V A

For the rule R and the configuration (6,6 + 6,...,06 + (k-1)8) this table gives
the expected average rank of the selected subset (top) and the expected proportion
of the populations selected in the subset (bottom) when the double exponential

population with mean 6 + (i-1)5 has rank i (i = 1,...,k). i
]
P* = .90, n 5
§ 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 ?
B
2 1.425 .348  1.213 1.097 1.036 .013 .004 .001 1.000 1.000
.932 .851 714 .598 .537 .513 .504 .501 .500 .500 :
3 1.890 .670 1.439 1.237 1.102 .037 .012 .004 1.001 1.000
.915 .724 .561 .453 .384 .352 .339 .335 .334 .333
4 2.324 91 1.592 1.355 1.165 .063 .022 .007 1.002 1.001
.879 .603 .454 . 369 .305 271 .257 <292 - 29l .250 »
5 2.715 .099 1.701 1.450 1.225 .091 .033 .010 1.003 1.001 |
.822 512 .381 .313 .256 .223 .208 .203  .201 .200
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TABLE IV

For the rule R and the configuration (6,6 +5,...
probability of selecting the double exponential
population with mean 6 + (i-1)6 has rank i (i

B

32

,6+(k-1,8) this table gives the
population with rank i when the
W N

pr= 95, B =
§ .8 1.0 1.5 2.0 2.5 3.0 3.5 4.0
ki R
21 984 .72 .692 .414 .187 .069  .024  .007
2 .995  .999 1.000 1.000 1.000 1.000 1.000 1.000
31 927 .604 < .139 .006 .001 .000  .000  .000
2 976 .89 ' 832 .68 .33F 1M .05 .017
3 .998  .999 1.000 1.000 1.000 1.000 1.000 1.000
41 .863 .18  .006  .000  .000  .000  .000  .000
2 .952 11¢  .203 026 @ .002 .000  .000  .000
3 986 - .960 ' 888 .723 .45] 209 079 .028
4 .999 1.000 1.000 1.000 1.000 1.000 1.000 1.000
5] 739 027 000 000 .000C 000 @ .000 .000
2 .898 .246 .009 .000 .000 .000 -000 .000
3 .965  .774  .261 037 008 000 .000 .000
4 .990 971 917 .784 .536 .267 107 .038
5 .999  1.000 1.000 1.000 1.000 1.000 1.000 1.000
TABLE V B

For the rule R and the configuration (6,0 + §,...

.002
.000

.000
.005
.000

.000
.000
.009
.000

.000
.000
.000

4.5

012

1.000

,0 + (k-1)8) this table gives

5.0

.001
.000

.000
.002
.000

.000
.000
.003
.000

.000
.000
.000

004

1.000

the expected average rank of the selected subset (top) and the expected proportion

of the populations selected in the subset (bottom) when the double exponential

population with mean 6 + (i-1)s has rank

$RY = V.. 0k,

P* =95, n =3
5 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
k
2 1.472 1.435 1.346 1.207 1.093 .035 .012 .004 1.001
.975 .935 .846 .707 .593 .535 .512 .504  .501
3 1.959 1.827 1.601 1.418 1.226 .096 .035 011 .004
.968 .847 .657 .545 .447 .381 351 ;339 . 339
4 2.430 2.123 1.769 1.556 1.339 . 157 .059 .021 .006
.950 .715 .524 .437 .363 .302 .270 257 .252
5 2.877 2.345 1.894 1.649 1.431 .214 .086 .031 .010
.918 .604 .438 .364 . 308 .253 .221 .208  .202

il




TABLE IV C
For the rule R and the configuration (6, 6 + §,...,6 + (k-1)8) this table gives
the probability of selecting the double exponential population with rank i when
the population with mean 6 + (i-1)s has rank i (i = 1,...,k).

P* = .90, n =5

B 1.0 1.5 2.0 2.5 3.8 3.5 4.0 4.5 5.0

l

3

5T NN o441 s

21 .833 .524 .194 .050 .010 .002 .000 .000 .000 .000
2 .99 .999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

31 .680 .100 .004 .000 .000 .00C .000 .000 .000 .000
2 .914 .708 .350 .108 .024 .005 .001 .000 .000 .000
3 .996 .999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

41 .412 .006 .000 .000 .000 .000 .000 .000 .000 .000
2 473 .148 .007 .000 .000 .000 .000 .000 .000 .000
3 .945 .794 .458 - 157 .038 .008 .001 .000 .000 .000
4 .998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

5 1 157 .000 .000 .000 .000 .000 .000 .000 .000 .000
2 .495 .008 .000 .000 .000 .000 .000 .000 .000 .000
3 .824 .194 .010 .000 .000 .000 .000 .000 .000 .000
4 .960 .841 .538 .203 .053 .0Mn .002 .000 .000 .000
5 .998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

TABLE V C

For the rule R and the configuration (6,0 + &,...,0 + (k-1)§) this table gives the
expected average rank of the selected subset (top) and the expected proportion of

the populations selected in the subset (bottom) when the double exponential population
with mean o + (i-1)8 has rank i (i = 1,...,k).

P* = .90, n =5

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

N o=
et

.408 1.260 1.097 1.025 1.005 1.001 1.000 1.000 1.000 1.000
912 .761 .597 .525 .505 .501 .500 .500  .500 .500
3 1.632 1.505 1.2 1.07r2 1.006 1.003 1.000 1.000 1.000 1.000
.863 .602 .451] . 369 341 .335 .334 333 333 .333
4 2.196 1.671 1.347 1,118 1.029 1.006 1.001 1.000 1.000 1.000
.782 .487 .366 .289 .260 e .250 e o200 .250
5 2.490 1.792 1.436 1.162 1.043 1.009 1.002 1.000 1.000 1.000

.687 .409 .310 .241 21N .202 .200 .200  .200 .200
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TABLE IV D

For the rule R and the configuration (6,0 + §,...,6 +(k-1)8) this table gives the
probability of selecting the double exponential population with rank i when the
population with mean 6 + (i-1)8 has rank 1 (i = 1,...,k).

P* = 95. n=5

§ AL 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

nN X
pa—

933 . 756 .405 .132 .031 .006 .001 .000 .000 .000
.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

.857 239 .013 .000 .000 .000 .000 .000 .000 .000
.969 .871 .600 .248 .069 .014 .003 .000 .000 .000
.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1

2

3

1 .668 .018 .000 .000 .000 .000 .000 .000 .000 .000
2 .902 .333 .022 .001 .000 .000 .000 .000 .000 .000
3 .981 .912 .699 .341 .104 .023 .005 .001 .000 .000
4 .999 .000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1

é

3

4

5

-

.365 .001 .000 .000 .000 .000 .000 .000 .000 .000
.736 .026 .000 .000 .000 .000 .000 .000 .000 .000
.927 .406 .031 .001 .000 .000 .Q00 .000  .000 .000
.986 935 .763 .413 =135 .032 .006 .001  .000 .000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

TABLE V. D

For the rule R and the configuration (6,6 + §,...,6 + (k-1)3) this table gives

the expected average rank of the selected subset (top) and the expected proportion
of the populations selected in the subset (bottom) when the double exponential
population with mean ® + (i-1)8 has rank i (i = 1,...,k).

P*= .95, n =5

0.5 1.0 1.5 2.0 2.5 3.0 35 4.0 4.5 5.0

[ |

1.464 1.378 1.202 1.066 1.015 1.003 1.001 1.000 1.000 1.000

.965 .878 .702 .566 .215 .503 .501 500 .500 .500

3 1.931 1.660 1.404 1.165 1.046 1.010 1.002 1.000 1.000 1.000
.942 .703 .538 .416 . 356 .338 .334 . % S & & « 333

4 2.353 1.855 1,53 1.25 1.078 1.017 1.003 1.001 1.000 1.000
.887 .566 .430 - 339 .276 .256 251 .250  .250 .250

o 2.712 2.002 1.6289 1.330 1.8 1.085 V.80% 1.000 1000 1.000

.803 .474 « 399 .283 .227 .206 .201 .200  .200 .200
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